
What is Your Function? Static Pattern Matching

on Function Behavior

Leandro Facchinetti1, Pottayil Harisanker Menon1, Zachary Palmer2,
Alexander Rozenshteyn1, and Scott F. Smith1

1 The Johns Hopkins University
2 Swarthmore College

Abstract. We de�ne a new notion of function pattern, which supports
runtime pattern matching on functions based on their behavior. The
ability to runtime dispatch on function type information enables new
programmer expressiveness, including support of overloading on higher-
order functions as well as other useful patterns.
We formally present a type inference system for function patterns. The
system answers questions of function pattern matching by recursively
invoking the type inference algorithm. The recursive invocation contains
some delicate issues of self-referentiality that we address.

1 Introduction

Pattern matching is a prominent component of functional programming lan-
guages, as it is an excellent tool for case analysis and data destruction. It has
also been extended in many dimensions: conjunction, disjunction, and negation
patterns [3,10], combining guards with pattern matching [3], embedding compu-
tation via view patterns [14], and recursive patterns [8]. This paper extends pat-
tern matching in another useful direction, support for function pattern matching.
Function pattern matching is based on a function's behavior : the function pat-
tern int ~> char, for instance, matches only those functions which will accept
an int and return a char. Even in languages without subtyping, function pat-
terns are meaningful; for example, in Haskell, the pattern _:_ ~> Just _ could
match exactly those functions which return a Just when passed a non-empty
list. 3 Our approach is a hybrid of compile- and run- time pattern matching: the
bulk of the work is done at compile time, and a runtime dispatch table aligns
compile- and run-time decisions.

There are several potentially important uses of function patterns. First, they
can be used to supplement the underlying type system. In this way, they are
similar to re�nement types [12], dynamic contracts [9], and static contracts [18].
Using function patterns to express type assertions is especially relevant in the
context of subtype constraint type inference systems [1], which have notoriously
unreadable types. Second, function patterns support dynamic dispatch based
on the type of data an input function will be able to process. This is already
possible on non-function data, especially in systems with structural subtyping: a
function can essentially be overloaded by providing a case branch for each type

3 Data types in Whayrf are expressed as unions of singleton typed records.

of input it can handle. Function patterns allow this form of dynamic dispatch to
be extended to higher-order functions.

There are signi�cant technical challenges, however, including non-local vari-
ables and function parameters. And, it is possible for function pattern matching
answers to be interdependent � a naive system will contain paradoxes of self-
reference (�I match this pattern if and only if I do not�). Dealing with this
paradoxical case is the biggest technical challenge.

Outline In the next section, we give an informal overview of higher-order function
patterns. In Section 3, we give the operational semantics and type system for
Whayrf (pronounced �wharf�), a small language with function patterns. In this
section we assume as given a function pattern dispatch relation answering how a
given function on a given pattern will dynamically dispatch. Then, in Section 4
we present a methodology for the inferring such a dispatch relation in a way
that handles the paradoxes of self-reference that arise. We review related work
in Section 5 and conclude in Section 6.

An implementation of Whayrf which supports all examples in the overview
can be found on Github.4

2 Overview

This section provides an informal overview of function patterns in both meaning
and use.

2.1 Whayrf's Semantics in Brief

Whayrf is a simple core language: it includes only higher-order functions, pattern
matching, records, and integers. The pattern matching semantics of Whayrf
admit structural subtyping. Our formal presentation is over a further simpli�ed
version which eschews integers and only allows a degenerate form of records.

Whayrf's type system is based on subtype constraint systems, which have
been shown to be expressive [1] and suitable for complex pattern matching [17].
These systems are usually characterized by the presence of a type constraint
closure algorithm for deductively closing subtype constraints: a set of subtyping
constraints are inferred for the expression to be typechecked and, if the transitive
closure of those constraints produces no inconsistencies, then a sound inferred
type exists.While the paper focuses on subtype inference, the general principles
should be adaptable to other forms of type inference and program analysis.

2.2 Function Patterns

This paper aims to �ll a gap in functional programming language designs: while
functions are �rst-class data in functional languages, pattern matching is gener-
ally not extended to allow functions to be matched on. To recify this situation,
Whayrf introduces the notion of function patterns. While tuple, list, and other
patterns match data based on its shape, function patterns match functions based
on their behavior : a function pattern π1 ~>π2 matches an argument which (1) is
a function, (2) takes any argument matching the pattern π1, and (3) returns a

4 https://github.com/JHU-PL-Lab/whayrf

result matching the pattern π2. We use arrow ~> in function patterns to disam-
biguate function patterns from function types. Consider the following example:

1 let callWithDefault f = case f of
2 {} ~> int as g -> g {}
3 int ~> int as g -> g 1 in
4 callWithDefault (fun n -> n + 3)

Here, callWithDefault accepts a function and passes it an appropriate argu-
ment. The match on line 3 is invoked since that is the �rst case clause matching
the argument's type. Observe that there is no type signature in fun n -> n + 3
dictating this behavior. Instead, a type is inferred for the argument and that type
is used to construct a runtime dispatch table for the case clause.

To construct this dispatch table we must answer what looks like a subtyping
question: is the function's type a subtype of the interface's type? The problem
with this general question is its complexity: since types are described by general
subtype constraints, this subtyping question appears to be undecidable [13].

Our solution is to solve a simpler problem, whether the function argument
can be viewed as matching the pattern π1 ~>π2. We in turn compute this answer
by introducing a type representing π1 and performing a subordinate typecheck:
the function matches the pattern i� the application of the higher-order function
argument to the type representing π1 successfully typechecks and matches π2.

Consider in more detail the case analysis typing of the above example. In
the �rst case, we attempt to match the argument with the pattern {} ~> int.
For this, pattern matching creates an �unknown� type bounded above by {} to
which we apply the function fun n -> n + 3. In this subordinate typechecking
process a record is added, a type error, and so the pattern fails to match. So,
the next case clause is considered with pattern int ~> int; we repeat the same
process but this application typechecks and thus the pattern matches.

2.3 Self-reference

The above approach work well until self-referential functions are considered. The
di�culty arises from the fact that the pattern matching and typechecking are
interdependent. 5 We can then easily produce a paradoxical pattern match as in
the russell function of Figure 2.1.

1 let rec selfMatch n:int =
2 case selfMatch of int ~> {} -> {}
3 in selfMatch 4

1 let rec russell n:int =
2 case russell of
3 int ~> {} -> 0
4 _ -> {}
5 in russell 4

Fig. 2.1. Examples of Self-Reference

In the above, a naive pattern match would proceed by typechecking the
application of russell to an int argument. But this succeeds i� it fails, a
paradox.

A simple resolution of the paradox would be to disallow cyclic dependencies,
but this can be too strict since it prevents encoding instanceof on an object's

5 This code uses syntactic sugar for recursion. It can be encoded using standard means, and
subtype constraint systems are powerful enough to infer the resulting types.

own type, such as is found in Java equals methods. Instead, we wish to disallow
cycles which do not have a consistent dispatch (like russell) while allowing
those that do. For this purpose, we infer a dependency graph of function pattern
matches in Section 4.2, and use it to rule out (fail to typecheck on) programs
with paradoxes.

2.4 Applications

Here we present potential applications of function pattern matching.

Type signatures Subtype constraint systems are powerful, but they produce
complex types which are di�cult to read. One of the goals of function patterns
is to address this shortcoming: pattern matching with function patterns is pow-
erful enough to use pattern matching to encode common type assertions and
restrictions. For instance, let f x = . . . : int -> int may be encoded as:

1 let f = let g x = . . . in // Assertion
2 case g of int ~> int -> g

1 let f = let g x = . . . in // Restriction
2 let h x:int = let r y:int = y
3 in r (g x)
4 in case g of int ~> int -> h

Fig. 2.2. Type assertion and restriction

Here, the case expression matches the function g with exactly one pattern;
if the pattern does not match, then the match is not exhaustive and a type error
occurs.

Note that this example demonstrates a type assertion and not a type restric-
tion: while we have established that f matches int ~> int, it may also be able
to operate on other types. If we wish to restrict the type of our function, we can
accomplish this by eta-converting with the domain part of the function pattern.

Overloading Higher-Order Functions Case analysis in a system with struc-
tural subtyping allows a form of overloading: a function accepting e.g. int∪char
may act di�erently on one than the other. Function patterns allow overloading
on higher-order functions which, in tandem with type inference, we believe to be
novel in the literature. For instance, consider a scenario in which the following
function is de�ned in a library:

1 let nest num:int record:{} =
2 if num < 0 then {}
3 else if num == 0 then record
4 else {a = nest (num - 1) record}

1 let nest num:int arg =
2 if num < 0 then {}
3 else if num == 0 then
4 case arg of
5 {} -> arg
6 {} ~> {} as fn -> fn {}
7 else {a = nest (num - 1) arg}

Fig. 2.3. Before and after overloading

This toy function creates a record nested num times. A potentially desirable
overloading could be to allow the function to be called with a record-generating
function, to be called when the record is required.

Here, we case analyze on the argument to determine if it is a record or
a (record-generating) function. In general, this mechanism extends to function
data the same form of overloading already possible on non-function data.

Behavior similar to the above can be achieved using typeclasses [19], but type
classes dispatch on completely static type information and not on any information
at run-time. Consider the following code:

1 let inform listener =
2 case listener of
3 ({a:int,b:int} ~> int) as f -> f {a=4,b=8}
4 ({a:int} ~> int) as f -> f {a=4}

A typeclass version of the above would rely upon the static knowledge of
the argument's type where inform is called. Function patterns, on the other
hand, rely upon the static type inferred for the value that is passed to inform
at runtime. This subtle di�erence means that e.g. client code need not be fully
aware of the type of the function it is passing to inform in order for the �rst
branch to be invoked. In summary, overloading encoded by function patterns
is a form of dynamic dispatch whereas overloading encoded by typeclasses is a
static dispatch.

Structural instanceof With function patterns, Whayrf is also capable of en-
coding dispatch on structural types; we believe this to be novel in the literature.
For instance, the relevant distinction between two classes may be their response
to a damage message. One may write:

1 let collide message = case message of
2 {a:{damage: {} ~> bool} as ship} -> ship.damage()

In essence, �{damage: {} ~> bool}� is the pattern of a damageable object;
this is e�ectively a form of structural instanceof, like Ruby's respond_to or
Smalltalk's respondsTo:.

3 Core Formalism

In this section, we present a simpli�ed version of the Whayrf language given in
the overview. Our approach to typechecking is derived from [15]. This approach
is especially suited to function patterns but is somewhat unusual. For this sec-
tion, we will assume that an already computed dispatch table for function pat-
tern matches is available; we will show how to compute this table in Section 4.
This approach allows us to introduce our typechecking approach separately from
function pattern match inference.

To avoid distraction from the focus of this paper, we do not formalize integers
or full records. For illustration purposes, we instead include so-called �degener-
ate� records: sets of static labels with no associated data, such as {a,b}.

3.1 A-Normal Form

To simplify our formal presentation, we use a shallow, A-normalized expression
grammar. A-normal form (ANF) grammars are those in which all operands are
trivial (i.e. variables or literal values) [11]; our A-normal form is shallow in

that only variables are permitted as operands. This form facilitates alignment
between the operational semantics and the constraint-based type system; we
discuss this alignment further in Section 3.3. As a further restriction, we assume
that each variable is assigned at most once in the program. The combination
of shallow ANF and unique variable assignments gives a one-to-one mapping
between variable names and program points and allows us to avoid discussion of
complexities such as variable shadowing.

e ::= −⇀s expressions s ::= x = r clauses

r ::= v | x | x x | x ~π ? f : f right-hand sides E ::= −−−−⇀x = v environment

f ::= x -> e functions v ::= R | f values

π ::= R | π ~> π patterns R ::= {l, . . .} records

x variables l �eld labels

Fig. 3.1. Expression Grammar

Throughout this document, we write lists of length n as [g1, . . . , gn], and use
|| for list concatenation. We may write concatenation of a non-list as shorthand
for singleton list concatenation when it is unambiguous: g1 ||[g2, g3] = [g1, g2, g3].
We also use {g, . . .} to refer to a (possibly empty) set of g. Given this notation,
the grammar of our language appears in Figure 3.1.

Of note is the case analysis right-hand side of the form x ~π ? f1 : f2. This
expression matches the contents of the variable x with the pattern π. On success,
the argument is passed to f1; otherwise, it is passed to f2. This binary pattern
matching operation is su�cient to encode the examples presented in Section 2.

From here on, we assume that expressions are closed unless otherwise noted.

3.2 Operational Semantics

We now de�ne an operational semantics for ANF Whayrf as a small step relation
e −→1 e′. We must freshen variables as they are introduced to the expression
to preserve the invariant that each variable is uniquely de�ned. We take an un-
usually formal approach to variable freshening because it considerably simpli�es
our proofs to closely align the operational semantics and the type system, which
mandates deterministic freshening to guarantee termination. To select fresh vari-
ables in our operational semantics, we de�ne an injective function α(x, x′) = x′′

that produces a fresh variable x′′ from x′ (the variable we are freshening) and x
(the point in the program being freshened). For simplicity, a reader may simply
interpret α(−,−) = x′′ to read �x′′ is fresh�.

For convenience, we write α(x, v) to indicate the freshening of all bound
variables in v. We also write RV(e) to refer to the return variable of e (that is,
the variable assigned in e's last clause).

We de�ne the operational semantics as a small step relation e −→1 e′

(Figure 3.2). The operational semantics is largely standard but, due to our
use of a shallow A-normal form, it is neither precisely substitution-based nor
environment-based. The aforementioned �gure makes use of a compatibility re-
lation, v\E ∼ π (read as: �v in environment E matches π�), the rules for which
appear in Figure 3.3. The compatibility relation is used to factor pattern match-
ing out of the Conditional small step rules. In matching function patterns, the

Variable Lookup

E(x2) = v

E ||x1 =x2 || e −→1 E ||x1 = v || e

Application

E(x2) = x′4 -> e′1 α(x2, x
′
4 -> e′1) = x4 -> e1

E ||x1 =x2 x3 || e2 −→1 E ||x4 =x3 || e1 ||x1 =RV(e1) || e2

Conditional Success

f1 = x3 -> e2 E(x2) = v v\E ∼ π
E ||x1 =x2 ~π ?f1:f2 || e1−→1 E ||x3 = v || e2 ||x1 =RV(e2) || e1

Conditional Failure

f2 = x3 -> e2 E(x2) = v ¬ v\E ∼ π
E ||x1 =x2 ~π ?f1:f2 || e1−→1 E ||x3 = v || e2 ||x1 =RV(e2) || e1

Fig. 3.2. Small Step Operational Semantics

compatibility relation defers to the dispatch relation f - π1 ~> π2. We discuss
the properties of this relation in Section 3.4 and de�ne it in Section 4.1.

Function Match

f - π

f\E ∼ π

Record Match

π = R R ⊆ R′

R′\E ∼ π

Fig. 3.3. Compatibility

This dispatch relation is a key focus of this paper. One intuition is to view
the dispatch relation as a dispatch table, with functions as rows and function
patterns as columns. We show in Section 4 how this dispatch relation can be
inferred during typechecking. The dispatch table is �nitized through generaliza-
tions made by the type system; we discuss this further in Section 3.4.

It is helpful to de�ne further notation to aid in later discussion of the oper-
ational semantics. Given the above small step relation, we de�ne e0 −→∗ en to
hold when e0 −→1 . . . −→1 en for some n ≥ 0. Note that e −→∗ E means that
computation has resulted in a �nal value. We write e X−→1 i� there is no e′ such
that e −→1 e′; observe E X−→1 for any E. When e X−→1 for some e not of the
form E, we say that e is stuck.

3.3 Type System

Recall that subtype constraint systems [1,2,17,15] �rst infer constraints for an
expression and then perform a deductive closure of those constraints to search
for inconsistencies. To simplify the presentation, we give only a monomorphic
system; polymorphism is left to future work.

Initial Constraint Generation Figure 3.4 provides a grammar of the type
system. Of particular note is the constraint corresponding to the conditional
α ~π ? φ1 :φ2. Much of the power of function patterns comes from precise
analysis of the paths that data can take through the program. The form of this

C ::= {c, . . .} constraint sets t ::= α\C constrained types

b ::= τ | α | α α | α ~π ? φ :φ lower bounds c ::= b <: α constraints

φ ::= α -> t function types τ ::= {l, . . .} | φ types

α type variables

Fig. 3.4. Type Grammar

constraint facilitates precise analysis by allowing us to avoid introducing spurious
constraints from conditional branches that are not explored; this is somewhat
reminiscent of conditional constraints [16].

We choose this constraint grammar and the A-normalized expression gram-
mar so that they maintain a close syntactic and semantic correspondence. Each
expression in the expression grammar aligns closely with some term in the type
grammar: values v are paralleled by types τ , expressions e are paralleled by con-
strained types α\C, and so on. For each rule in the operational semantics, we
de�ne a type system analogue. As a result, the constraint closure step of type
inference bears similarities to an abstract interpretation [7]. We use this fact in
Section 4 to drive our reasoning about function patterns.

We formalize this alignment as a function JeK which produces a constrained
type α\C (Figure 3.5). We assume a variable alignment function JxK = α which
is injective for the set of variables appearing in the original program but maps
each freshening of a given x aligns to the same type variable; i.e. JxK = Jα(x′, x)K
for every x and x′. This interaction between freshening and alignment is relevant
for dispatch and is discussed further in Section 4.1.

J
n−⇀s K = αn\{ci | i ∈ {1..n}, JsiK = αi\ci}

where JsnK = αn\cn

Jx0 =RK = Jx0K\ r <: Jx0K
Jx0 = fK = Jx0K\ JfK <: Jx0K

Jx0 =x1K = Jx0K\ Jx1K <: Jx0K
Jx0 =x1 x2K = Jx0K\ Jx1K Jx2K <: Jx0K

Jx0 =x1 ~π ? f1 : f2K = Jx0K\ Jx1K ~π ? Jf1K :Jf2K <: Jx0K

JfK = Jx1K -> JeK
where f = x1 -> e

Fig. 3.5. Alignment

We will sometimes write JeK to refer to only the constraint set in the result.

Constraint Closure The initial alignment provides an initial set of inferred
constraints for the program. Next, we work toward de�ning a constraint closure
relation which propagates data forward, by paralleling the operational semantics,
an easy task given the close syntactic alignment between the two systems.

In analogy with the value compatibility relation in Section 3.2, we de�ne a
type compatibility relation to determine whether there is any intersection between
a type and a pattern. The rules for this relation are given by Figure 3.6. Type
compatibility is written τ\C �∼ π and has four places: the type being examined
(τ), the constraint set in which this examination is being done (C), the pattern
the type is being matched against (π), and �, a metavariable ranging over

Record Match

τ = { . . . } π = { . . . } π ⊆ τ
τ\C ∼ π

Record Anti-Match 1

τ = { . . . } π = { . . . } π * τ

τ\C #∼ π

Record Anti-Match 2

τ = { . . . } π 6= { . . . }

τ\C #∼ π

Dispatch Positive

φ - π

φ\C ∼ π

Dispatch Negative

¬ φ - π

φ\C #∼ π

Fig. 3.6. Type Compatibility Rules

Transitivity

{τ <: α2, α2 <: α1} ⊆ C

C
D=⇒1 C ∪ {τ <: α1}

Application

{α1 α2 <: α3, τ1 <: α1, τ2 <: α2} ⊆ C τ1 = α4 ->α′\C′

C
D=⇒1 C ∪ C′ ∪ {τ2 <: α4, α

′ <: α3}

Conditional Success

{α1 ~π ? φ1 :φ2 <: α2, τ <: α1} ⊆ C φ1 = α3 ->α4\C′ τ\C ∼ π

C
D=⇒1 C ∪ C′ ∪ {τ <: α3, α4 <: α2}

Conditional Failure

{α1 ~π ? φ1 :φ2 <: α2, τ <: α1} ⊆ C φ2 = α3 -> α4\C′ τ\C #∼ π

C
D=⇒1 C ∪ C′ ∪ {τ <: α3, α4 <: α2}

Fig. 3.7. Constraint Closure

(indicating a witness has been found which matches) and # (indicating that a
witness has been found which does not). To distinguish between ¬ τ\C ∼ π
and τ\C #∼ π, we say anti-match when referring to the latter. This notion of
constructive failure is preferable to the alternative in that it is monotone.

Recall that we described a runtime function pattern dispatch relation v - π
in Section 3.2; evaluation is de�ned to be parametric in this relation. Analogously,
we de�ne closure here to be parametric in a type-level function pattern dispatch
relation τ - π; this is the solution to the function pattern dispatch problem,
as we assumed above. By deferring to this relation, type compatibility for a
particular function and function pattern relates as exactly one of or #. In
Section 4.1, we will construct a system which infers a dispatch relation, but the
system presented here only checks the consistency of a given dispatch.

Compatibility for records is unsurprising: a record type can be proven to
match a record pattern if the type has at least the �elds the pattern requires;
a record type can be proven to anti-match a pattern if the pattern demands a
�eld which is absent or if the pattern is not a record pattern.

Due to the correspondence between the expression and constraint grammars,
the deductive closure of constraints proceeds in analogy with the small step
relation of the operational semantics. Each step of closure represents one forward

propagation of constraint information and abstractly models a single step of the
operational semantics. We de�ne the constraint closure relation as follows.

De�nition 1. We write C D=⇒1 C ′ to indicate a single step of constraint clo-
sure. This relation is de�ned by the rules in Figure 3.7. In analogy with the

operational semantics, we de�ne C0
D=⇒∗ Cn to hold when C0

D=⇒1 . . . D=⇒1 Cn
for some n ≥ 0. We also de�ne C0

D=⇒ω Cn to hold when C0
D=⇒∗ Cn ∧ Cn D=⇒1

Cn+1 only if Cn = Cn+1 (that is, when Cn is completely closed).

The operational semantics has a de�nition for a �stuck� expression; the type
system analogue is the immediately inconsistent constraint set, which arises when
a non-function is called:

De�nition 2 (Immediate Inconsistency). A constraint set C is immedi-
ately inconsistent in one case: a non-function type is called. That is, {α1 α2 <:
α3, τ1 <: α1, τ2 <: α2} ⊆ C ∧ τ1 6= α -> t\C. A constraint set which is not
immediately inconsistent is immediately consistent.

De�nition 3 (Inconsistency). A constraint set C is eventually inconsistent
or simply inconsistent if it closes to an immediately inconsistent constraint set.

That is, C D=⇒∗ C ′ ∧ C ′ is immediately inconsistent. A constraint set which is
not eventually inconsistent is always consistent or simply consistent.

We can now de�ne what it means for a program to be type correct:

De�nition 4 (Typechecking). A closed expression e typechecks i� JeK = α\C
and C is consistent.

We defer the discussion of the soundness of this typechecking process to
Section 3.4; however, we state the decidability here.

Theorem 1 (Decidability). Whether a closed expression typechecks is decid-
able if the dispatch relation is decidable.

Lemma 1 (Con�uence). If C D=⇒1 C1 and C D=⇒1 C2, then ∃C ′. C1
D=⇒∗ C ′

and C2
D=⇒∗ C ′.

Theorem 2 (Fixpoint Computability). D=⇒ω, the �xpoint of D=⇒1, is a com-
putable function.

3.4 Properties of Dispatch

The dispatch relation v - π is used only when v is a function value. It can be
viewed as a large lookup table: entries in this table correspond to pattern/func-
tion pairs such that any pattern match that could occur during the execution of
the program has a corresponding entry. Note that we will generate this dispatch
table from type information; this leads us to make necessarily conservative con-
clusions about function behavior but also serves to �nitize the dispatch table.
These conservative conclusions are not draconian; due to the nature of initial
alignment, each syntactically distinct function has its own row in the dispatch
table. Since there is a bijection between our function types and syntactic func-
tions (due to monomorphism), we can use the same sort of table during type

checking as we would during execution. The type system presented in this pa-
per is monomorphic; a polymorphic system's dispatch table would additionally
distinguish between di�erent polyinstantiations of the same function.

Above, we use the notation τ - π to describe the form of a type-level dispatch
relation. In this section, we discuss the properties of such relations; we thus use δ
to index over such relations. Analogously, we use d to index over runtime dispatch
relations of the form v - π. Where convenient, we identify these relations with
their indices. In both cases, we require the relations to be decidable.

Recall that we intend for the type system, in the course of closure, to infer -d
for the operational semantics to use. In particular, we will extract this relation
from the �nal constraint set. We use γ to range over functions which may be
used to extract such relations.

In Section 4.1, we will de�ne a closure which does not rely on an external
de�nition of dispatch, and in Section 4.1 we will de�ne the -d we intend to use;
however, for this section, we will remain parametric in the dispatch relations and
the dispatch extraction function so that we can discuss their properties.

What properties are desirable in dispatch? First and foremost, we would like
the relations for typechecking and evaluation to correspond; otherwise, the eval-
uation paths that are being typechecked are not those that are being executed.

De�nition 5 (Safety). A dispatch relation δ is safe with respect to a dispatch
relation d i� f -d π ⇐⇒ JfK -δ π whenever both are de�ned.

We also want the dispatch relation to be de�ned at any pair that matters.

De�nition 6 (Coverage). A dispatch relation δ covers a dispatch relation d
i� JfK -δ π is de�ned whenever f -d π is de�ned. A dispatch relation d covers
an expression e i� f -d π is de�ned for every pair of f and π that occur while
executing e. We will also say that a dispatch relation δ covers an expression e if
there is some d such that the above hold.

Soundness follows directly.

Theorem 3 (Soundness). If e −→∗ e′ under dispatch relation d such that
e′ is stuck, dispatch relation δ is safe with respect to d, δ covers d, and d covers
e, then e does not typecheck under dispatch relation δ.

And what properties are desirable in a dispatch extraction function? There
are many d/δ pairs which are technically safe but not at all usable (e.g. when
both relations reject all matches, leading to the anti-match of every function
pattern). We desire an extraction function which conforms to the decisions we
made during constraint closure:

De�nition 7 (Stability). With respect to a program e and an extraction func-

tion γ, a dispatch relation δ is stable i� JeK D=⇒ω C such that γ(C) = δ. We
elide e and γ if they are evident from context.

We also want pattern match success to correspond to programmer intuitions:

De�nition 8 (Sensibility). A dispatch relation d is sensible w.r.t. a program
e, function f , and pattern π ~> π′ i�, for all values v and environments E where
f -d π ~> π′, v\E ∼ π, E(x1) = f , and E(x2) = v, the following are true:

1. E ||x3 =x1 x2 does not get stuck,
2. If E ||x3 =x1 x2 −→∗ E′ ||x3 = v′, then v′\E′ ∼ π′.

We say a dispatch relation d is sensible with respect to a program e if it is
sensible with respect to all of that program's function-pattern pairs. We elide e
when evident from context.

Note that sensibility does not address cases in which the dispatch relation
does not hold. There is very little that can be guaranteed at runtime about a
function which does not match a function pattern, since this means that some
input causes the function to behave in a way contrary to the above expectation.

Theorem 4. The stability property is decidable.

4 Inferring Function Dispatch

The task of inferring dispatch for Whayrf appears cyclic: in order to dispatch
functions, we need to use information gathered from type checking; but in order
to typecheck a program, we must know how functions are dispatched. Fortu-
nately, this problem is largely illusory: most matches do not have cyclic de-
pendencies and we can typically order the closure to defer matches until their
dependencies are met. For the cases with cycles we present a novel cycle resolu-
tion algorithm below. We begin in Section 4.1 by showing how the type system
can be changed to infer function pattern dispatch given a dependency graph of
matches in the program. In Section 4.2, we show how that dependency graph
may be inferred by repurposing constraint closure.

By the end of this section, this paper will have de�ned three distinct closure
relations. The �rst closure relation was de�ned previously in De�nition 1, which
unloads all function pattern work to an external relation and is discussed in
Section 3.4. The second closure relation will be de�ned in De�nition 9, which
infers a dispatch table but relies on a dependency graph. Finally, the third closure
relation will be de�ned in Section 4.2 which computes the dependency graph.

Running a program then involves the following steps (Figure 4.1). First,
we determine the initial constraint set by performing initial alignment and then
using dependency inference closure on that constraint set; that process generates
a dependency graph. Then, we perform dispatch inference closure on the original
constraint set using this dependency graph; that process infers a dispatch table,
which can then be used by the operational semantics to run the program.

4.1 Dispatch Inference

In this section, we show how to construct a sensible (a la De�nition 8) dispatch
relation during the course of type inference; the relation constructed is decidable
and can be used in the previous system. As a side-e�ect of inferring dispatch,
though, we end up showing that the program does not get stuck, eliminating
the need to typecheck separately (see Theorem 5). We start o� by extending the
grammar with auxiliary notation needed to help in construction of the relation.

We add four new constraint forms and one new type, shown in Figure 4.2.
The α <: π constraint is an assertion that a type variable matches a pattern; it is

Program
Initial

Alignment
Initial

Constraints
Dependency
Inference

Match
Dependency

Graph

Dispatch
Inference

Dispatch
Table

Execution

Result

Step 1 Step 2

Step 3

Step 4

Fig. 4.1. Running a Program with Function Patterns

τ ::= · · · | •dπ types

c ::= . . . | τ ∼+ π | τ ∼− π | τ ∼× π | α <: π constraints

Fig. 4.2. Changes to the type grammar

only added to check return values of functions during dispatch relation inference.
Similarly, the suppression constraint τ ∼× π is used to guide closure as performed
by auxiliary functions. The two other constraints, referred to as dispatch con-
straints, assert a type matches (+) or anti-matches (−) a pattern, and each such
constraint can be viewed as a �cell� of the overall function dispatch table. The
new unknown type •dπ represents some type which matches the pattern π.

Unknowns Suppose we are trying to determine whether a function f should
match or a function pattern π = π1 ~> π2. A �rst attempt could be to create a
type from π1, pass it into f as an argument, and then check that each result of f
matches π2. Although this is intuitive, it is also incorrect in Whayrf due to the
presence of subtyping and implicit runtime type analysis. Consider the following
function (written in the intuitive language presented in the overview):

1 let f x = case x of
2 {a:int,b:int} -> {}
3 {a:int} -> 0

This function should not match the pattern {a:int} ~> int because there
are some values of type {a:int} (e.g. {a=0,b=0}) for which the function does
not return an int. If our pattern matching process creates an argument of type
{a:int}, the subordinate closure will not encounter this second branch and the
function will appear to match. Instead of testing a speci�c, concrete type as an
input to the function, we need a way of testing all subtypes of {a:int} at once.

We use unknown types, •dπ, to solve this problem. An unknown type rep-
resents an existential type restricted by the pattern in π. For example, •d{l}
represents a record type which has an l �eld. This is distinct from the type {l}
(the record having exactly the l �eld), from α where {l} <: α (a type which may
be such a record but might also be any other type lower bounding α), and from
α <: {l} (which requires α to be a record with a l �eld and is inconsistent other-
wise). Unknown types never produce inconsistencies as a result of the bounding
π. Our unknown types are related to the • of [18].

Compatibility For our inference system, we de�ne type compatibility using the
rules in Figures 3.6 and 4.4, the latter of which handles function patterns (by
deferring to previously inferred dispatch constraints, e.g. τ ∼+ π) and unknowns.

Record

r ⊇ r′

r v r′

Function

π′1 v π1 π2 v π′2
π1 ~> π2 v π′1 ~> π′2

Fig. 4.3. Pattern Subsumption

Unknown Match

•dπ′\C ∼ π

Unknown Anti-Match

π′ 6v π
•dπ′\C #∼ π

Function Match

φ ∼+ π1 ~> π2 ∈ C
φ\C ∼ π1 ~> π2

Function Anti-Match

φ ∼− π1 ~> π2 ∈ C
φ\C #∼ π1 ~> π2

Fig. 4.4. Type Compatibility Extension

The compatibility rules re�ect the existential nature of unknowns. The anti-
match rule states that an unknown anti-matches a pattern unless it is guaranteed
to match the pattern by π. The match rule claims that an unknown matches any
pattern. The reason for this is that no pattern that a type is known to match can
lead us to conclude that it anti-matches some other pattern. Unknowns also ex-
hibit the property that matching and anti-matching are not mutually exclusive.
This is because both matching and anti-matching are existential claims.

Type compatibility for functions does not attempt to match functions with
patterns directly; it instead merely tests for the presence of a match constraint
(φ ∼+ π) or an anti-match constraint (φ ∼− π) constraint in the constraint set.
These constraints are introduced during closure when we are certain of whether
a function matches a given pattern (see Figure 4.6 below). Note that we do
not use the dispatch relation itself; instead, Section 4.1 uses these match and
anti-match constraints to de�ne that relation.

Closure This section de�nes the closure relation which will infer the dispatch

relation for function patterns. We begin by de�ning a relation N=⇒1 to address
the closure steps which do not concern function patterns. We then de�ne a

relation F=⇒1 to analyze function pattern matches and introduce the match and
anti-match constraints described above.

Unknown Application

{α1 α2 <: α3, •dπ′ <: α1, τ <: α2} ⊆ C π1 ~> π2 = π′ τ\C ∼ π1

C
N=⇒1 C ∪ {•dπ2 <: α3}

Fig. 4.5. Non-Function Closure Extension

Non-Function Closure We de�ne a relation N=⇒1 to be D=⇒1 from De�nition 1 ex-
tended with the rule in Figure 4.5 to handle unknowns. This Unknown Appli-
cation rule is needed when function patterns themselves have function domains.
The philosophy of this rule is similar how higher-order functions are addressed
in [18], although that work does not consider dynamic dispatch.

We de�ne N=⇒∗ and N=⇒ω analogously to De�nition 1.

Function Rules We now consider the core issue of this paper: how does the type
system know whether or not a function matches a function pattern? The answer
is to simply test a simulated function application for consistency. If applying the
function to all types matching the domain of the match produces a consistent
constraint set in which the output of the function always matches the codomain,
the function should match the pattern.

We give the rules for a new relation F=⇒1 in Figure 4.6. This ruleset is implic-
itly parametrized over ≺, a decidable relation which de�nes dependencies, which
will be further discussed in Section 4.2. We use ≺+ to indicate the transitive
(but not re�exive) closure of ≺. There are three closure rules, which need four
auxiliary relations in their de�nition. FunPats is a function that produces a set
of function-pattern pairs (〈φ, π〉), one for each enabled function pattern match in
the constraint set. FunMatch is a predicate that performs an isolated closure as
dictated by its parameters and determines if the resulting set is consistent. The
closure rules defer to FunMatch to determine whether to add a dispatch con-
straint indicating match or anti-match. Each such constraint is de facto building
an entry in the function pattern dispatch table. Ready(〈φ, π〉, C) is a predicate
which holds if C contains a dispatch constraint for each dependency of 〈φ, π〉 as
determined by the ≺ relation; a pair is intuitively Ready if all dependencies have
been resolved. Finally, Blocking(S) is a predicate which determines if S, a set
of function-pattern pairs, contains only pairs which could never become Ready

during the normal course of closure due to a cycle.
There is an apparent circularity of de�nition here: the de�nition of FunMatch

depends on the de�nition of consistency (De�nition 10), which depends on =⇒∗

and =⇒1 (De�nition 9), which depend on F=⇒1 (Figure 4.6), which depends on
FunMatch. However, all of the aforementioned relations are well-founded.

The Function Match and Function Anti-Match closure rules add dis-
patch constraints based on whether the function matches (or anti-matches) the
pattern. The Cycle Breaker rule adds a constraint simultaneously to each
match that occurs on a dependency cycle. Cycles will never be resolved by the
other two rules, since they are never Ready; all elements of a cycle are simul-
taneously set to +. We choose + and not − for three reasons: �rst, we prefer
to match function patterns rather than anti-match them because a match is
a stronger guarantee; second, self-reinforcing cycles are common; and third, it
enables us to detect paradoxical self-reference.

Once a cycle is broken, its patterns can become Ready if they have any
dependencies external to the cycle; it is then possible for the Anti-Match rule
to apply and introduce a τ ∼− π constraint in addition to an already present
τ ∼+ π constraint, a situation we will label a type inconsistency (see Figure 4.7

τ ~π ∈ C i� {τ <: α, α <: π} ⊆ C or {τ <: α ∈ C,α ~π ? φ1 :φ2 <: α′} ⊆ C
or {•dπ ~> π′ <: α1, τ <: α2, α1 α2 <: α′} ⊆ C

FunPats(C) = {〈φ, π〉 | π = π1 ~> π2, φ ~π ∈ C}

FunMatch(φ, π, C0) =
{
true if C4 is consistent

false if C4 is inconsistent

where φ = α1 ->α2\C1 and π = π1 ~> π2 and C0
N=⇒ω C2

and C3 = {τ ∼× π | 〈τ, π〉 ∈ FunPats(C2)}
and C4 = {•dπ1 <: α1, α2 <: π2} ∪ C1 ∪ C2 ∪ C3

Ready(〈τ, π〉, C) = ∀〈τ ′, π′〉. if 〈τ ′, π′〉 ≺ 〈τ, π〉 then τ ′ ∼± π′ ∈ C
Blocking(S) = i� ∀〈τ, π〉 ∈ S. 〈τ, π〉 ≺+ 〈τ, π〉

and ∀〈τ, π〉 ∈ S. if 〈τ, π〉 ≺+ 〈τ ′, π′〉 ∧ 〈τ ′, π′〉 ≺+ 〈τ, π〉 then 〈τ ′, π′〉 ∈ S

Function Match

〈τ, π〉 ∈ FunPats(C) τ ∼× π /∈ C Ready(〈τ, π〉, C) FunMatch(τ, π, C)

C
F=⇒1 C ∪ {τ ∼+ π}

Function Anti-Match

〈τ, π〉 ∈ FunPats(C) τ ∼× π /∈ C Ready(〈τ, π〉, C) ¬FunMatch(τ, π, C)

C
F=⇒1 C ∪ {τ ∼− π}

Cycle Breaker

〈τ, π〉 ∈ FunPats(C) 〈τ, π〉 ∈ S ∀〈τ ′, π′〉 ∈ S. τ ′ ∼× π′ /∈ C Blocking(S)

C
F=⇒1 C ∪ {τ ∼+ π | 〈τ, π〉 ∈ S}

Fig. 4.6. Function Closure Rules

below). All three closure rules avoid suppressed function pattern matches τ ∼× π
since they are already under scrutiny by FunMatch.

As we mentioned earlier, our approach to inferring a function pattern match
involves a simulated function call; for this reason, the constraints checked by
FunMatch resemble those introduced by the Application rule in Figure 3.7. In
particular, FunMatch simulates an application whose argument is an unknown
restricted by a pattern and whose output must match a pattern. It is also im-
portant to note that FunMatch introduces suppression constraints; at minimum,
such a constraint must be introduced for the pattern match being simulated (for
well-foundedness), but we introduce one for every function pattern match reach-
able by non-function closure; this ensures that in the subordinate closures, each
pattern match is considered independently of its peers and maintains con�uence.

Closure relations The global closure process may now be de�ned.

De�nition 9. We de�ne =⇒1 as C0 =⇒1 C1 i� C0
N=⇒1 C1 ∨ C0

F=⇒1 C1

Given =⇒1, =⇒∗ and =⇒ω are de�ned analogously to De�nition 1.

Ready(〈φ, π〉, C) and Blocking(S) depend on the relation ≺. A
suitable relation is one that satis�es Ready(〈φ, π〉, C) ∧ (C =⇒∗
C ′) implies FunMatch(φ, π, C) = FunMatch(φ, π, C ′); that is, the relation

expresses a dependency between two function-pattern pairs when the manner
in which the �rst is dispatched may a�ect the outcome of the second.

The Function Match rule in Figure 4.6 relies on FunMatch, which is not
monotone with respect to the constraint set; as a result, the order of closure
operations could matter. To see why, consider any function that relies on a non-
local variable (for example, (fun x -> fun y -> x) 0); it is possible to add a
constraint which broadens the return type of this function. For this reason, the
rule �res only when all dependencies of the match are have already been decided.
When restricted in this way, FunMatch is monotone with respect to =⇒∗.

Another concern here is well-foundedness. Note that we are calling the full
closure (indirectly, by asking if a constraint set typechecks) as a subroutine in
FunMatch, and in�nite descending chains of closure are not desirable. Fortu-
nately, we can establish the following.

Lemma 2 (Well-Foundedness). The de�nition of =⇒1 is well-founded.

Corollary 1. The de�nitions of =⇒∗, =⇒ω, typechecks, and FunMatch are well-
founded.

Application Failure

{α1 α2 <: α3, { . . . } <: α1, τ2 <: α2} ⊆ C
C is immediately inconsistent

Unknown Application Failure

{α1 α2 <: α3, •dπ1 ~> π2 <: α1, τ <: α2} ⊆ C τ\C #∼ π1

C is immediately inconsistent

Upper-Bounding Pattern

α <: π ∈ C α\C #∼ π
C is immediately inconsistent

Ambiguous Dispatch

τ ∼+ π ∈ C τ ∼− π ∈ C
C is immediately inconsistent

Fig. 4.7. Immediate Inconsistency

Inconsistency Figure 4.7 de�nes immediate inconsistency. The four rules are
mostly straightforward. The Application Failure rule is the same as the one
described in De�nition 2, catching the case where a non-function value may be
called. The Unknown Application Failure rule handles the case (arising
only in sub-closures initiated by function patterns) that an unknown is treated
as a function in a potentially unsafe way, either because it is not restricted to be
a function or because it is not guaranteed to accept the argument. The Upper-
Bounding Pattern rule (again, arising only in sub-closures) ensures that all
values appearing at a point match a pattern. The Ambiguous Dispatch rule
indicates that the closure was unable to �nd a consistent dispatch; this occurs
when e.g. the constraint set contains a paradoxical self-reference.

De�nition 10 ((In)consistency). Analogous to De�nition 3.

Lemma 3 (Inconsistency is monotone). If C is (immediately) inconsistent
then so is C ∪ C ′.
De�nition 11 (Typechecking). Analogous to De�nition 4, replacing D=⇒∗
with =⇒∗.

Dispatch We can �nally de�ne the dispatch relation mentioned in Section 3.2.

De�nition 12. We de�ne a canonical dispatch relation δC for closed, consistent
constraint set C as follows: τ -δC

π holds i� τ ∼+ π ∈ C. We de�ne a canonical
dispatch relation de for expression e as follows: v -de

π holds for v appearing in
e when JeK =⇒ω C and JvK -δC

π holds.

In order for this de�nition to make sense, we'd like d to be unique. The most
obvious way to show uniqueness would be to prove that =⇒ω is a function; this
is only the case when its left argument is eventually consistent, but that su�ces:

Lemma 4 (Determinism). If C =⇒ω C ′ and C is consistent, C ′ is unique.

Corollary 2. If e typechecks then de is unique.

The canonical dispatch relation represents the dispatch information learned
from performing constraint closure. It has the following valuable property:

Lemma 5. If JeK =⇒ω C then δC is safe with respect to de.

Soundness of Closure We assert closure as presented is sound. Recall that we

use D=⇒ω to refer to the complete closure de�ned in Section 3.4.

Lemma 6. For any consistent C =⇒ω C ′, if C D=⇒ω C ′′ under the dispatch
relation δC′ , then C ′′ ⊆ C ′.
Theorem 5 (Soundness). For any program e, if JeK is consistent then e does
not get stuck when evaluated under dispatch relation de, provided de covers e.

The rules as presented here will produce a non-covering dispatch relation for
some programs where there are functions that are matched but never called; we
have an extension to address this shortcoming, but we omit it for space reasons.

4.2 Inferring Dependencies

Closure as de�ned in the previous section relies upon a dependency analysis of
function patterns: for each function pattern match, we must know the function
pattern matches that might in�uence its result. Here we informally de�ne such a
dependency analysis to produce the ≺ relation upon which our constraint closure
depends. We use (another) deductive closure system for this purpose.

This closure does not need to be as precise as the one we use for typing,
so we drop any attempt at �ow sensitivity, and we just assume that functions
both match and anti-match all patterns. This lets us build a data dependency
graph whose vertices are type variables and type-pattern pairs. 〈τ1, π1〉 ≺ 〈τ2, π2〉
is de�ned to hold i� there is a (directed) path from 〈τ1, π1〉 to 〈τ2, π2〉 whose
interior vertices are all type variables.

4.3 Putting it all Together

Recall Figure 4.1 from the beginning of this section, which illustrates the steps
involved in running a program. Now that we have all the de�nitions in hand, we
can more precisely specify this process.

Starting with program e, we compute C0 = JeK, the initial constraint set
of the program. From there, we compute the dependency graph of the function

pattern matches present in e, �≺�. We use ≺ to compute C1, where C0 =⇒ω C1.
If C1 is inconsistent (equivalently, if e does not typecheck), we stop, since we
cannot extract a dispatch table from an inconsistent constraint set. On the other
hand, if C1 is consistent, we extract δC1 and use it to compute de. We verify
that de covers e. Finally, we run e −→∗ e′ in the context of de.

5 Related Work

We know of no precedent for fully inferred higher-order function pattern match-
ing. Our interest in the topic was inspired by the power of runtime contracts [9].
Function patterns are more static than traditional contracts, because higher-
order function contracts only enforce the contract at runtime and only on the
values they were invoked on, whereas higher-order function patterns are stati-
cally enforced at all potential runtime values. Contracts, on the other hand, have
the advantage of having the full dynamic program context at their disposal, and
so the two approaches are complementary.

One example of contracts work which is particularly near to Whayrf is that of
Symbolic PCF with Contracts [18]. That system uses a mechanism similar to the
Unknown Application given here (Figure 4.5) to handle contract veri�cation in
the presence of unknown higher-order values. The work of [18] supports broader
logical expressiveness in its contracts than Whayrf does in function patterns. A
major contribution of Whayrf, however, is that it permits dynamic dispatch on
function patterns; [18], for example, only permits function contract assertions.

Run-time conditioning on declared type information is a common feature;
Java/C++ dynamic typecasts are a prime example. But this is simply a run-
time dispatch based on a nominal type tag, so it only allows assertions around
declared program types. Typed multimethods [4,6] are another runtime dispatch
mechanism based on nominal types. CDuce [5] allows functions to be matched
directly by a pattern which is their annotated type (or subtype thereof), so it also
does not allow matching on function behavior (as with our inference approach).

One application of function patterns is to allow the overloading of higher-
order functions. Type classes [19] are capable of performing a similar task but in
a subtly di�erent way. Much like the signatures of CDuce (discussed above), type
classes rely on information statically gathered at the invocation site to select a
type class instance for dispatch. Using function patterns, the statically inferred
behavior of the runtime value is used to decide dispatch. This distinction is,
in a sense, similar to the di�erence between static and dynamic dispatch for
object-oriented message dispatch.

6 Conclusion

We presented a mechanism for incorporating higher-order function pattern
matching into a statically-typed language. We believe that function pattern
matching has signi�cant applicability: it supports higher-order function over-
loading, enables a novel form of multimethod dispatch, and enriches subtype
constraint type systems with a form of interface declaration. We hope to inves-
tigate further applications of this theory in future work.

Independent of practical utility, these results are interesting in the same way
coding a meta-circular interpreter is interesting: su�ciently powerful pattern
matching can embed type declaration within the language, and then to dynam-
ically control the computation in ways not possible in traditional languages.

References

1. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In
FPCA, pages 31�41, 1993.

2. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional
types. In POPL 21, pages 163�173, 1994.

3. Bard Bloom and Martin Hirzel. Robust scripting via patterns. In DLS, pages
29�40. ACM, 2012.

4. G. Castagna, G. Ghelli, , and G. Longo. A calculus for overloaded functions with
subtyping. Information and Computation, 117(1):115�135, 1995.

5. Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and
Luca Padovani. Polymorphic functions with set-theoretic types. part 1: Syntax,
semantics, and evaluation. In POPL, 2014.

6. Craig Chambers. Object-oriented multi-methods in Cecil. In ECOOP, 1992.
7. P. Cousot. Types as abstract interpretations, invited paper. In POPL, January

1997.
8. Manuel Fähndrich and John Boyland. Statically checkable pattern abstractions.

In ICFP, pages 75�84. ACM Press, 1997.
9. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.

In ICFP, 2002.
10. Kathleen Fisher and John Reppy. The design of a class mechanism for Moby. In

PLDI, New York, NY, USA, 1999.
11. Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence

of compiling with continuations. In Proceedings of the ACM SIGPLAN 1993 Con-

ference on Programming Language Design and Implementation, 1993.
12. Tim Freeman and Frank Pfenning. Re�nement types for ml. In PLDI, 1991.
13. Fritz Henglein and Jakob Rehof. Constraint automata and the complexity of re-

cursive subtype entailment. In ICALP, volume 1443 of Lecture Notes in Computer

Science, 1998.
14. Dan Licata and Simon Peyton-Jones. View patterns: lightweight views for Haskell.

Haskell Café mailing list, 2007.
15. Zachary Palmer, Pottayil Harisanker Menon, Alexander Rozenshteyn, and Scott

Smith. Types for �exible objects. In Asian Programming Languages Symposium,
2014.

16. François Pottier. A 3-part type inference engine. In ESOP, pages 320�335. Springer
Verlag, 2000.

17. François Pottier. A versatile constraint-based type inference system. Nordic J. of

Computing, 7(4):312�347, 2000.
18. Sam Tobin-Hochstadt and David Van Horn. Higher-order Symbolic Execution via

Contracts. In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications, 2012.
19. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, 1989.

	What is Your Function? Static Pattern Matching on Function Behavior

